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Abstract
 
 
 The primary objective of this research is to investigate the impact of an autonomic 

logistics system (ALS) on the sortie generation process for an individual airbase.  As in 

some prior studies of this process, the methodology used to model the sortie generation 

process is a queueing network containing fork-join nodes for concurrent maintenance 

activities.  The sortie generation rate is commonly regarded as the primary performance 

measure of the sortie generation process.  This measure coincides with the throughput 

and is used to compare two models:  i) pre-ALS operations and ii) ALS-enhanced airbase 

operations.  Analysis of the models shows that the ALS model yields higher generation 

rates under a variety of scenarios resulting from the differences in the sortie generation 

process that are inherent when an ALS is implemented.  These results demonstrate that 

implementation of an ALS will positively impact the sortie generation process by 

increased sortie generation rates with equivalent or reduced resource levels. 

 



MODELS FOR SORTIE GENERATION WITH

AUTONOMIC LOGISTICS CAPABILITIES

1. Introduction

1.1 Background

The United States Air Force is examining the possibility of using autonomic

logistics for maintenance of aircraft. Autonomic logistics can be described as a

process by which sensors on the aircraft send information to maintenance crews

when an aircraft component has failed or is about to fail. This thesis is concerned

with assessing the effects of an Autonomic Logistics System (ALS) on the ground

operations of a given base. Air Force maintenance currently uses a two level approach

to maintenance, one level on the base with the airframes themselves, and a second

level called a depot detached from the bases where pieces removed from the airframes

on base are sent to be repaired. Despite a possible impact on depot level maintenance,

it is believed the greatest impact of the ALS will be on base level maintenance. The

standard metric for determining the effectiveness of base level maintenance is the

sortie generation rate, or the number of sorties a base can fly in a given time period

[6].

The sortie generation process begins with pre-flight activities. Pre-flight con-

sists of actions such as refuelling, munitions uploading, baggage and passenger load-

ing, and the taxi onto the runway. Completion times of these tasks rarely vary from

their average, with the exception of taxi which provides for the majority of interest

in this activity. The next activity is the sortie. It is here that subsystems on the

aircraft fail or malfunction, which will require maintenance for the aircraft to pro-

duce a following sortie. Once the aircraft lands, it must go through troubleshooting.

1-1



This activity contains a taxi to the aircraft’s parking space, munitions download,

baggage and passenger disembarkation, and the troubleshooting of the aircraft. The

troubleshooting aspect requires maintainers to use diagnostic equipment to deter-

mine where the aircraft has experienced a failure, and ordering the appropriate part

to fix the system. The final activity before repeating the process is maintenance.

It is believed this is of great importance to the sortie generation process as it can

cause the longest delays due to service, and the variability has the potential to be

enormous. Here maintenance is assumed to encompass all aspects of repairing an

aircraft so that it may perform another sortie. However, it is possible to complete

multiple maintenance actions concurrently [6].

When autonomic logistics is incorporated into the sortie generation process, the

process will change. The majority of the changes will occur in the troubleshoot node.

Due to the prognostic capabilities of an ALS, the amount of diagnostic equipment

needed to locate failures is greatly reduced. This also means that the amount of time

required to complete diagnostics is decreased. Furthermore, due to the prognostic

ability of an ALS, parts needed for maintenance are assumed to always be on hand

when a maintenance action must be completed. The ALS allows maintainers to have

prior knowledge of impending failures, and will have the needed lead-time to order a

part that will soon fail. Finally, the ALS may be able to eliminate false alarms that

can occur when performing diagnostics on an aircraft. The current assumptions is

that these differences will lead to an improved sortie generation rate [19].

Due to its great value to a military force, the sortie generation process has been

studied in depth [6, 20]. Two main techniques have been used in such efforts. One of

these techniques is simulation modeling. This method requires massive amounts of

data and a significant length of time to perform a model run. However, simulations

are very flexible and allow the user to closely mimic real world conditions. Once the

simulation experiment has been conducted, a statistical analysis must be performed

to properly interpret the results. A second technique that has been used to study
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the sortie generation process is analytical models via queueing networks. These

models, while often quite simple, can be used to model a complex system. Queueing

network models run very quickly with minimal amounts of data. However, analyzing

these networks requires intensive mathematical background. Moreover, such models

can be significantly less flexible than simulation models; however, mean performance

measures can be computed easily and without replication. With these characteristics

in mind, one can see why queueing networks provide an attractive means to study

the sortie generation process [6].

1.2 Problem Definition and Methodology

While the sortie generation process has been well studied by Jenkins [6] and

Willits [20] using queueing networks and by many others using the Logistics Com-

posite Model (LCOM) simulation, none of these studies have focused on the impact

of autonomic logistics. Implementing an ALS on base-level maintenance will alter

the activities required for the sortie generation process. While pre-flight and sortie

activities will be unchanged, some post-flight activities will not require as much time,

and some activities will be eliminated altogether.

In order to to provide an understanding of the impact of autonomic logistics

on sortie generation rates, the current sortie generation process will be modeled and

compared with the proposed ALS process. In order to accomplish this, the proposed

ALS must be well understood. Models can then be built combining the knowledge

of the ALS with previous analytical models of the sortie generation process. The

model results will be vcompared with those of computer simulation. The analysis

of the models will be used to illustrate the effects of ALS on the sortie generation

process.

Those currently involved in designing the ALS, such as the designers of the

Joint Strike Fighter, believe that implementing autonomic logistics into maintenance
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operations will reduce the resources required to maintain the aircraft supported by

the ALS. This implies that, with equal resource levels, implementing an ALS will

allow maintainers to maintain or exceed the current sortie generation rate. The

previously discussed models will show that the sortie generation rate will in fact, be

positively impacted by the presence of an ALS [19].

The main contributions of this thesis can be summarized as follows. One model

will be created to allow analysis of the current sortie generation process and a second

model will be created for analysis of a sortie generation process enhanced by an ALS.

Analysis of these models will demonstrate that, by implementing an ALS, an airbase

will experience a higher sortie generation rate confirming a key assumption of current

ALS literature [19]. The models also provide a convenient means by which to perform

a sensitivity analysis on model parameters.

1.3 Thesis Outline

The following chapter will review previous work in the areas of queueing net-

works, modeling the sortie generation process and autonomic logistics. Chapter 3

reviews a queueing network model for sortie generation and presents a revised version

for current operations and a second revision for incorporating the ALS. Chapter 4

contains numerical analysis of the models compared to LCOM output, as well as sen-

sitivity analysis of the two models to compare the results of each. Finally, Chapter

5 will provide conclusions, recommendations, and directions for future research.
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2. Review of the Literature

In this thesis, we investigate the sortie generation process and the effect of an

Autonomic Logistics System (ALS) upon this process. This will require the review

of relevant work to clarify the sortie generation process and how the proposed ALS

system will affect it. The following sections will review the ALS system, Logistics

Composite Model (LCOM) simulation, and two previous analytical models.

2.1 Autonomic Logistics System (ALS)

This section will review current literature on the ALS. A brief discussion of

the Prognostics and Health Management (PHM) and Joint Distributed Information

System (JDIS) is followed by a synopsis of the ALS as a whole. Finally, discussion

of the anticipated impact of an ALS on the current sortie generation process will be

provided.

A key aspect of the ALS is the PHM. The goal of a PHM is to asses the cur-

rent health of a component and predict when it will experience a failure and require

maintenance actions. The ability to collect this data enables the ALS to give an

adequate lead-time to order spare parts required to repair the aircraft. In addition,

with such information the ALS will greatly reduce the need for diagnostic equip-

ment and personnel and, in some cases, call for the elimination of these tools that

are currently vital to maintenance activities [9]. Another improvement to current

maintenance activities that will occur with prognostics is the enhanced capability of

maintainers to know what personnel, equipment, and spare parts will be necessary

to repair an aircraft while the aircraft is still in flight. This allows a maintenance

crew to have everything in place to repair the aircraft upon sortie completion, and

can give personnel an opportunity to review repair procedures for the aircraft as

quickly as possible [19].
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The Joint Distributed Information System (JDIS) of the ALS disseminates

information gathered from the PHM to the people who need it such as commanders,

maintainers and logisticians. The JDIS is the part of the ALS that automates the

logistics system. This system is intended to be a single, all-knowing source for

logistics concerns, knowing which aircraft need what actions, where spare parts are

stored and where they are needed, and which personnel is needed to repair aircraft

and where they located [19]. The JDIS automates the entire logistics system by

analyzing all of the information and sortie generation rate targets to schedule the

ordering of parts, manpower allocation, and maintenance actions [9].

In order to be successful, the ALS requires both the PHM and JDIS. The ALS

will be comprised of an aircraft enabled by a PHM system, the JDIS, a responsive

logistics infrastructure, and specialized maintainers to repair the aircraft. The follow-

ing example shows how the four parts work together to enhance the sortie generation

process. As an aircraft executes a mission, subsystems experience degradation over

time that is detected by the optimally-located sensors. This information is then

relayed to the JDIS while the aircraft is still on its mission. The JDIS determines

which subsystems require repair and when the action must take place. The JDIS

keeps track of impending failures, orders spare parts for upcoming maintenance ac-

tion, and schedules personnel to repair an aircraft at the time most advantageous to

the sortie generation process. To accomplish this, a flexible logistics system must be

in place to handle orders, personnel and maintenance activity requests of the JDIS.

Finally, an intelligent, well-equipped maintainer is needed to perform the repairs to

the aircraft. Even though the ALS automates everything else, personnel are still

needed to execute the work or the sortie generation process will collapse [9].

The implementation of an ALS provides advantages outside of the sortie gener-

ation process. Some of these include decreased responsibility of maintainers to locate

failures, a proactive logistics systems as opposed to the current reactive system, and

enhanced capability for predicting the sortie generation rate. However, since these
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are not part of the process, they are not able to be modeled, or of concern to this

thesis [9].

It is believed that the ALS will alter the current sortie generation process

in three major ways: i) completely changing the ordering activity, ii) reduction of

diagnostic equipment and time to detect failures, and iii) elimination (or at least

reduction) of false alarms. As mentioned, the JDIS will order parts for scheduled

maintenance activities to minimize the impact of maintenance actions on the sor-

tie generation process. This means that when a part is needed for a maintenance

activity, it will already be in place so that no ordering must occur. Secondly, the

prognostic ability of the PHM, in theory, allows the JDIS to know the remaining

useful life each subsystem has at a particular point in time. This means the diagnos-

tics aspect of troubleshooting will be greatly reduced as the PHM will alert the JDIS

of a failure or impending failure. This will at least reduce the need for diagnostics,

and could in some instances eliminate the diagnostic actions altogether. Finally,

the sensors of the PHM are installed as to be redundant so that the JDIS knows

the actual state of the subsystems of the aircraft. This should ensure that when a

system shows a failure, it has actually failed. It must be reiterated that failures will

still occur with an ALS in place, but the makeup of the ALS will promptly correct

these problems and allow the sortie generation process to function with enhanced

performance as compared to the current state [9, 19].

2.2 Simulation Models for Sortie Generation

One method used for modeling real-world systems is discrete-event computer

simulation. A stochastic simulation is a computer program used to mimic the pro-

cesses of a system by simulating each step of the process using input data and

internal probability distributions. The United States Air Force uses many simu-

lations to study a variety of aspects unique to its operations, one of which is the

sortie generation process. Of the simulations used for the sortie generation process,
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Dyna-Sim [13] was designed to show the importance of automatic test equipment in

the sortie generation process, the Sortie Generation Model (SGM) [1] was designed

to evaluate varying levels of resources on the sortie generation process, and the Lo-

gistics Composite Model (LCOM) was designed to estimate manpower requirements

for a given sortie generation rate. Throughout the years, LCOM has become the Air

Force approved simulation model for estimating the sortie generation rate [4]. In

addition, there exist two simulations that model the ALS. Rebulanan [17] modeled

the function of the ALS within the Joint Strike Fighter’s current proposal of auto-

nomic logistics, while Malley [12] examined the PHM component of the ALS. The

following discussion will review the operation of LCOM and its use in the United

States Air Force. Since LCOM is flexible in nature and is a validated tool of the Air

Force, it will be used in this thesis as a benchmark for the queueing network models

of Chapter 3.

LCOM is a simulation model used to define manpower requirements for a va-

riety of aircraft currently in the United States Air Force inventory. The model was

created in the 1960’s by the Air Force Logistics Command and The Rand Corpora-

tion in an effort to create a data analysis tool for base-level maintenance operations

and the sortie generation process [4]. LCOM has become the standard tool of the

Air Force analyst for estimating manpower, spare parts requirements and sortie gen-

eration rate. It accomplishes this via a dynamic simulation meaning the simulation

makes random draws from a population to determine how the modeled network will

behave. LCOM uses these random draws for a variety of purposes, including sortie

duration, repair duration, and chance of failure of a subsystem of an aircraft [4]. By

running multiple replications of LCOM, a statistical analysis of the results should be

performed to bound the actual performance measures of the process being modeled

[5].

One of the advantages of LCOM is its extreme flexibility. This allows LCOM

to model a vast array of networks and aircraft. However, this advantage can quickly
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become disadvantageous. As process complexity increases, more closely reflecting

real-world conditions, the amount of necessary input data explodes, making the

model tedious. For instance, it has been reported in [5] that intensive LCOM studies

can take as long as six months to gather the input data.

In general, the LCOM model runs in the following manner. The analyst inputs

an operational requirement on a mission for a certain aircraft. This requirement is

entered into the model as a scenario in which the specified aircraft will participate.

Each time a sortie is demanded by the scenario, the simulation calls a suitable

and available aircraft to perform the sortie. When the aircraft returns, it must

follow a set of rules corresponding to base-level maintenance operations. The analyst

running LCOM is responsible for entering the scenario, the number of aircraft, and

the mean and variance of repair times, sortie times, and the probability that aircraft

subsystems will experience failures [5].

Though LCOM is designed to set manpower requirements, it is also a useful

tool for determining sortie generation rates for a given scenario. LCOM estimates

manpower requirements by having the user input a desired sortie generation rate, and

calculates the appropriate manpower level required to achieve that rate [4]. As such,

one of the outputs of LCOM is the sortie generation rate. Sensitivity analysis on the

input data provides commanders and decision makers a good idea of how the sortie

generation process will react under various conditions which aides in determining

how to conduct operations. Also, this makes LCOM a useful tool for benchmarking

analytical models [5].

2.3 Analytical Models of Sortie Generation

This section reviews an alternative to simulation modeling in order to examine

a real-world system, namely analytical queueing network models. The sortie gener-

ation process is well suited to be modeled as a queueing network. The mathematics
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of queueing networks will be reviewed followed by a review of the work of Dietz and

Jenkins [6], a pertinent queueing network model for the sortie generation process.

A queueing network is a connected graph in which nodes represent single sta-

tion queues and arcs connect nodes between which entities flow. Individual queueing

stations have a resource level, service time distribution, and capacity. These charac-

teristics make queues a viable means for modeling each step of the sortie generation

process. As an example of how the activities may be modeled as queues, we look at

the pre-flight activity. Clearly, this step requires personnel, which are the resources,

to accomplish the tasks. This work can be completed in a random amount of time

that can be closely approximated by a service time distribution. The physical wait-

ing area for aircraft corresponds to the capacity of the queueing station. The other

activities of the sortie generation process follow a similar setup, which shows the

process can be modeled as a queueing network.

2.3.1 Basics of Queueing Networks

This subsection reviews the basic concepts of analytical queueing networks and

the mathematics used to evaluate the models for their steady-state performance. The

properties of queueing networks easily lend themselves to modeling real-world process

such as factory production lines, communication systems, and the sortie generation

process. Chapter 3 of this thesis presents the sortie generation process modeled

as a queueing network. Using an approximation algorithm to find the steady-state

performance measures is appropriate due to the complexity of this model. The

approximation algorithm used in Chapter 3 is know as the Mean Value Analysis

(MVA) algorithm, and is reviewed at the end of this section.

Let Zi(t) be an integer-valued random variable denoting the current number

of jobs at node i at time t, for i = 1, 2, ..., N and t ≥ 0. The random variable Zi(t)

is defined on the sample space S = {0, 1, 2, ...}. Let {X(t) : t ≥ 0} be the current

state of the system of nodes, X(t) = (Z1(t), Z2(t), ..., ZN(t)) where N is the number
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Table 2.1 Definition of queueing network terminology.

Symbol Description
K Number of jobs in system
µi(k) Service rate at node i when there are k jobs present
Ri Mean response time at node i
λi Throughput
Qi Queue length
Ui Server utilization
si Mean service time at node i
qi Probability of repair needed at node i
ri Number of servers at node i
Pi(k|K) Probability of k customers at node i given K total aircraft
λi(K) Throughput at node i when K jobs are in the system
Qi(K) Queue length at node i when K jobs are in the system
Ri(K) Response time at node i when K jobs are in the system
CT1(K) Average cycle time at node 1 when K jobs are in the system
P Matrix of routing probabilities
vi/v1 Mean number of visits to station i for every visit to node 1

of nodes in the system. The steady-state probability of having k jobs present at any

node i is defined as

πi(k) := lim
t→∞

P{Zi(t) = k}. (2.1)

Table 2.1 presents a list of terminology used throughout the discussion of queueing

networks and the MVA algorithm.

The steady-state probability of ki customers at node i represented as πi(ki) can

be found using rudimentary queueing theory. When the steady-state probability for

a queueing network can be found from the steady-state probabilities of each station

of the network, the network is known as a product-form network. This term was

first introduced by Jackson [10] for a very basic network of exponentially distributed

service times for each single server node in the system, now known as a Jackson

network. In that case, the steady-state probability is given by

π(k1, k2, ..., kN) = π1(k1) · π2(k2) · ... · πN(kN). (2.2)
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Table 2.2 Description of BCMP nodes.

Type Number Node type and service discipline
Type 1 M/M/m-FCFS (first come first served)
Type 2 M/G/1-PS (processor sharing)
Type 3 M/G/∞ (infinite server)
Type 4 M/G/1-LCFS PR (last come first serve, priority

This is the simplest product-form network, where the normalization factor for each

station is simply 1. For all networks that are not Jackson networks, the marginal

probabilities must be multiplied by a normalization constant, not 1, to yield the

steady-state probability of the entire network. Subsequent work by Baskett, et al. [2]

extended product-form networks to a large number of networks including open, closed

and mixed networks. Table 2.2 shows the four basic types of nodes for the so-called

BCMP networks that will yield a product form solution. Product-from networks

are extremely valuable to queueing networks by providing simplistic computation of

the network steady-state probabilities using the marginal steady-state probabilities

corresponding to each node.

Mean value analysis (MVA) was first introduced by Reiser and Lavenberg [18]

to determine performance measures of a closed queueing network. This iterative

approach was developed to avoid calculating the normalization constant, which is

often very difficult and costly in both time and computing power. As the name

suggests, this algorithm simplifies calculations by settling for mean values for random

quantities in lieu of the probability distribution. The MVA for closed queueing

networks is based on the arrival theorem and Little’s Law. The arrival theorem

states that in a closed network, a job arriving to node i with k jobs in the system

sees the same probability mass function as it would at the same node as it would

if there are k − 1 jobs in the system. Little’s Law relates the basic performance

measures to each other and is central to queueing theory. Little’s Law states that

Q = λR, (2.3)
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where Q is the mean number of jobs in system, λ is the system throughput, and R is

the mean response time. This holds for each node and the system as a whole. The

MVA algorithm is now presented for a single class closed network.

The first step of MVA is to initialize the terms,

Qi(0) = 0, πi(0|0) = 1, πi(j|0) = 0.

The next step is to calculate the mean response time of each node, Ti. The following

equation demonstrates how to compute the mean response time given a specific

BCMP type of node, as defined in Table 2.2.

Ri(k) =





µ−1
i (1 + Qi(k − 1)) Type 1,2,4

(µimi)
−1

(
1 + Qi(k − 1) +

∑mi−2
j=0

(mi−j−1)
πi(j|k−1)−1

)
Type 1

µ−1
i Type 3

(2.4)

Using Ti(k), the system throughput can now be calculated as such,

λ(k) =
k∑mi−2

i=1 viQi(k)
. (2.5)

The throughput is now used to calculate Qi(k),

Qi(k) = viλ(k)Ri(k). (2.6)

The MVA algorithm is executed by initializing the index k to the value 1 and

then computing the results for Equations (2.4), (2.5), (2.6). This step is reiterated

for k = 2, 3, ..., K to find the performance measures for the desired total number of

jobs in the system [3].
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Figure 2.1 Dietz and Jenkins [6] model for sortie generation.

2.3.2 Queueing Network Approach to Sortie Generation

Dietz and Jenkins [6] proposed an analytical model to calculate performance

measures of the sortie generation process. This work was later generalized by Dietz

and Hackman [8]. The model developed by Dietz and Jenkins [6] is simplistic yet

captures many of the important features of the sortie generation process. Since

queueing networks provide quick results with minimal input, they are well suited for

analyzing the affects of adding an ALS to base operations. The methods reviewed

here provide a foundation for the models developed in this thesis.

Dietz and Jenkins [6] present an analytical method to modeling the sortie

generation process via a closed queueing network. Previous analytical models had

failed to properly account for maintenance operations, which are often done simul-

taneously in a real world environment. Their work models the maintenance activity

using a fork-join node. A fork-join node is a queueing station where, upon arrival

to the node, a customer is decomposed into in J distinct and identical clones and

those clones begin service along the J paths concurrently. Dietz and Jenkins [6] also

present a method that enhances previous work on fork-join nodes by allowing for

probablisitic branching on the J paths. This allows an analyst to assign a probabil-

ity that a clone will require service on each path. Their model, as shown in Figure

2.1, graphically depicts the sortie generation process, including the fork-join node

for maintenance.
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This closed queueing network model consists of six nodes: pre-flight, sortie,

troubleshoot, a fork-join node, turnaround, and munitions upload. The fork-join

node represents five critical systems of an aircraft that need maintenance. Each sta-

tion is assumed to have an exponentially distributed service time. This distribution

is used to ensure tractability of the queueing network. This restriction is not as con-

straining as it appears, as the performance measures of closed queueing networks are

frequently unaffected by variances and higher-order moments [6]. In addition, the

work of Dietz and Hackman [8] extended this network by relaxing the assumption

of exponential service times. The mathematics of the network and MVA algorithm

employed to determine the performance measures lays the foundation for the work

of this thesis, and is presented in full detail in Section 3.1.

Dietz and Jenkins [6] present numerical comparisons for their modified MVA

algorithm and a simulation of the same model. These results were presented for

K = 10, 30, 50, 70 aircraft in the system. The response time Ri(K), throughput

λi(K), queue length Qi(K), and utilization Ui(K) were the main measures. Node 2

is the sortie node, and as such the throughput is equivalent to the sortie generation

rate. The largest error percentage for the entire network as compared with computer

simulation is less than 2.4%. With these excellent results, this model makes an intel-

ligent choice for the foundation of a high-level examination of the sortie generation

process, or possibly other similar processes requiring concurrent service.

Chapter 3 will present the methodology of Deitz and Jenkins [6] and the means

by which their model is extended for the models in this thesis. Their model will first

be modified to more closely reflect current operations. This model will then be

extended to analyze the sortie generation process in the presence of an autonomic

logistics system. Both models will be analyzed and compared to LCOM simulations

for the purpose of validation.
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3. Methodology

3.1 Review of Existing Model

This section will review the model and results developed by Dietz and Jenkins

[6]. First a brief review of the model will be outlined. Then the mathematics of the

queueing network and the results will be presented. This model builds the foundation

for the two new models developed in this thesis whose details will be presented in

Section 3.2.

As mentioned in Section 2.3.2, the approach of Deitz and Jenkins [6] to model

the sortie generation process is that of queueing networks. This closed queueing

network model consists of six nodes: pre-flight, sortie, troubleshoot, a fork-join node,

turnaround, and munitions upload. The fork-join node consists of five substations

that represent five critical systems of an aircraft that needs maintenance. Each

station is assumed to have an exponentially distributed service time. Figure 3.1

gives a graphical depiction of the model.

The model was analyzed using the MVA heuristic developed by Rao and Suri

[16] to deal with closed queueing networks with fork-join nodes, and enhanced to

handle fork-join nodes with probabilistic branching by Jenkins [11]. While MVA

will produce exact results for product-form networks, the heuristic will give only

approximate results for any network with more than one customer in system. The

heuristic will be used here since this network contains a fork-join node, and thus

1

SortiePre-Flight TurnaroundTroubleshoot Mun UploadMaintenance

Maintenance

Maintenance

Maintenance

Maintenance

Figure 3.1 Dietz and Jenkins [6] model for sortie generation.
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will not have a product-form solution. The first step in analyzing the network is to

present the MVA algorithm.

Let Zi(t) be an integer-valued random variable denoting the current number

of jobs at node i at time t, for i = 1, 2, ..., N and t ≥ 0. Zi(t) is defined on the

sample space S = {0, 1, 2, ...}. Let X(t) be the current state of the system of nodes,

X(t) = (Z1(t), Z2(t), ..., ZN(t)) where N is the number of nodes in the system. The

steady-state probability at any node i is defined as

πi(k) := lim
t→∞

P{Zi(t) = k}. (3.1)

The MVA algorithm is a method used to calculate the πi(k) values for a given

network. This allows for the computation of the mean performance measures for a

closed queueing network. This algorithm depends on two major theorems: the arrival

theorem and Little’s Law. The arrival theorem states that in a closed network, a

job arriving to node i with k jobs in the system sees the same probability mass

function as it would at the same node if there are k − 1 jobs in the system. Little’s

Law relates the basic performance measures to each other and is central to queueing

theory. Little’s Law states that

Q = λR, (3.2)

where Q is the mean number of jobs in system, λ is the system throughput, and R

is the mean response time. This holds for each node and the system as a whole.

The arrival theorem is now extended to the marginal local balance theorem.

This states

µi(k)Pi(k|K) = λi(K)Pi(k − 1|K − 1) (3.3)

where µi(k) is the state-dependent service rate with k jobs at node i, λi(K) is the

arrival rate with K jobs at node i, and Pi(k|K) is the probability of having k jobs at

node i given there are K jobs in system. Using Little’s Law along with the marginal
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local balance theorem then yields the following equations for mean response time

and queue length

Ri(K) =
K∑

k=1

k

µi(k)
Pi(k − 1|K − 1) (3.4)

Qi(K) =
K∑

K=1

kλi(K)

µi(k)
Pi(k − 1|K − 1). (3.5)

The visit ratios to each node are now calculated by solving the system of

equations resulting from −→v P = −→v , and arbitrarily setting v1 = 1. The visit ratios

allow us to calculate the cycle time for a customer at node i for all nodes in the

network.

CTi(K) =
M∑
i=1

viRi(K)

v1

(3.6)

The cycle time calculations allow us to compute λi(K) as

λi(K) =
Kvi

CTi(K)v1

. (3.7)

With λi(K) now calculated, the distribution of customers may now be calculated for

k + 1 jobs in the system. The equations are easily derived from the marginal local

balance theorem.

Pi(k|K) =
λi(k)Pi(k − 1|K − 1)

µi(k)
0 < n ≤ K (3.8)

Pi(0|K) = 1−
K∑

k=1

Pi(k|K) (3.9)

MVA is a recursive algorithm that begins with solving for the visit ratios and

the following boundary conditions

Pi(0|0) = 1 (3.10)

Pi(k|0) = 0, k > 0. (3.11)
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Using the boundary conditions allow us to make calculations for k = 1 of the previous

equations in the following order: Ri(k), CTi(k), λi(k), Pi(k|K), Pi(0|k), Equations

(3.4), (3.6), (3.7), (3.8), (3.9). This order is then reiterated for k = 2, 3, ..., K.

An MVA heuristic was developed by Rao and Suri [16] to handle the case when

a network contains a fork-join node. A fork-join node allows for a customer in the

system to receive service simultaneously for different activities. When a customer

enters the fork, it is cloned and sent down the different paths of the node, and thus

to the substations on each path. The customer departs the fork-join node only when

all clones have completed service and meet at the join node. The heuristic of Rao

and Suri [16] does not compute an exact solution as networks containing fork-join

nodes do not have product-form solutions. However, the heuristic has been shown

to approximate the solution very well [16].

The MVA heuristic requires two major assumptions, the previously presented

arrival theorem and that the response time for each substation of the fork-join node

is exponential and independent of all other substations of the fork-join node. For the

purpose of the following discussion, all substations are assumed to have one server.

This assumption is later relaxed.

The first step in analyzing the fork-join node is to find the mean response time

for each substation. Similar to finding the response time in the MVA algorithm, the

arrival theorem allows us to find the mean response time by the equation

Rj(K) =
K∑

k=1

k

µk(k)
Pk(k − 1|K − 1) (3.12)

where j = 1, 2, ..J and J is the number of paths in the fork-join node. Using Rk(K)

we can determine the mean holding time. For simplicity, let

θj(K) = 1/Rj(K). (3.13)
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It is easily shown that a clone at substation j has a longer response time than

all of the other clones in the fork-join node with probability

pj(k) = P{tj(k) > max[t1(k), t2(k), ..., tj−1(k)]} (3.14)

where tj is the random time to complete service of a clone at substation j. Dietz

and Jenkins [6] use the definition of a cumulative distribution function and the

exponential service times of each substation to show that

F (t) =
∏
j∈K

P{tj(n) ≤ t}

=
∏
j∈K

(1− exp{−θj(k)t}). (3.15)

Since the holding time of a customer at the fork-join node is the maximum

time to completion of the substations, the expected value of this random variable

is desired. The mathematical expectation of a non-negative continuous random

variable X with cdf F (·) is given by

E[X] =

∫ ∞

0

{1− F (t)}dt, (3.16)

therefore

E[max
j∈J

{tj(n)}] =

∫ ∞

0

{1− F (t)}dt. (3.17)

This equation can be simplified to (cf. Dietz and Jenkins [6])

E[max
j∈J

{tj(k)}] =

∑
j∈J

1

θj(k)
−

∑
j∈J

∑

l>j∈J

1

θj(k) + θl(k)
+ · · ·+ (−1)J+1 1∑

m∈J θm(k)
. (3.18)
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The cycle time for the system must be recalculated using the following equation

when Y is the set of non-fork-join nodes and Z is the set of fork-join nodes

CT (K) =
∑
i∈Y

viRi(K) +
∑
i∈Z

viE[max
j∈J

{tj(k)}]. (3.19)

This allows for the network to be analyzed as in the previous section. The following

equations apply to performance measures for the fork-join substations but must be

calculated for each iteration of the MVA heuristic algorithm.

λj(K) =
Kvj

CTi(K)vj

(3.20)

Qj(K) = Rj(K)λj(K) (3.21)

Uj(K) = sjλj(K) (3.22)

Pj(0|K) = 1−
K∑

k=1

Pj(k|K) (3.23)

Pj(k|K) =
λj(k)Pj(k − 1|K − 1)

µj(k)
0 < k ≤ K (3.24)

The results of the previous section are now extended to allow for probabilistic

branching on the different paths of the fork-join node. This allows the model to

accurately depict the real world conditions of base-level maintenance, as an aircraft

does not always require maintenance on each critical system.

Let Ω be the set of possible combinations of paths of the fork-join node, in-

cluding the occurrence of no paths (i.e., Ø). Also, let S be one subset of Ω and let

qi be the probability that path i will be visited. Thus, the probability of each S

occurring can be shown as

π(S) =
∏

k∈S

qk

∏

k/∈S

(1− qk) (3.25)
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Figure 3.2 Base model for sortie generation.

when the probability of visiting a path is independent of visiting the other paths.

Now, E[maxj∈S{tj(k)}] is calculated for each S in Ω. The final changes to the

heuristic are new cycle time and throughput calculations for fork-join substations,

CT (K) =
∑
i∈Y

viRi(K) +
∑
i∈Z

vi

∑
S∈Ω

E[max
j∈S

{tj(K)}]. (3.26)

λk(N) =
Kvjqj

CTi(K)vj

(3.27)

3.2 Base Model for Sortie Generation

The first step in examining the impact of an ALS on the sortie generation

process is to determine a model that depicts the current sortie generation process.

The network used for the purpose of examining performance measures as they exist

in the current sortie generation process is a modified version of the network reviewed

in the previous section. This new network, henceforth referred to as the base model,

consists of the following nodes: pre-flight, sortie, troubleshoot, order delay, order,

maintenance, turnaround, and munitions upload. The maintenance node is a fork-

join node to allow simultaneous service repairs, as maintenance operations are done

in the real world. Figure 3.2 graphically depicts the model.

The base model has a station for ordering the parts needed for maintenance.

This is done simply by adding a station the aircraft must visit before visiting the

maintenance fork-join node. The ordering action is approximated by an exponential
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infinite server node as the exponential distribution is a suitable approximation for

ordering actions and orders for multiple jobs can be accomplished at the same time

[6]. To further expand upon the base model, the ordering and troubleshoot nodes

are converted to a fork-join nodes to allow for analysis of ordering during the trou-

bleshooting phase of the sortie generation process. An order delay node is added

before the order node so that orders do not begin at the exact same time as the

troubleshoot activity.

The base model also differs from that of Dietz and Jenkins [6] in the mainte-

nance fork-join node. In this base model, a mean response time is added to the node

in the case where no paths (i.e. Ø) are taken. The case when an aircraft visits the

maintenance node but no paths are actually visited equates to a false alarm. This

false alarm is from the diagnostic equipment used during the troubleshooting phase

to determine which subsystem or subsystems have experienced a failure. The base

model incurs a time penalty when a false alarm occurs. This penalty is added be-

cause a false alarm requires maintainers to work on the aircraft to actually determine

that a false alarm has occurred as opposed to an actual failure. These alterations

to the Dietz and Jenkins [6] model are necessary for this thesis. Their model makes

the assumption that any part needed for a maintenance action is already in place

for the maintainers. This is not a realistic assumption in the current sortie gen-

eration process, as parts must be ordered when a failure is determined during the

troubleshooting phase. There are instances when the parts are on hand, but this is

not always the case. The model also assumed that no time elapses to determine a

false alarm has occurred. This assumption is inaccurate as maintainers must perform

work before finding out that the detected failure is actually a false alarm.

3.3 ALS Enhanced Maintenance Operations Model Description

The main purpose of this thesis is to examine the effects of the ALS on the

sortie generation process. As discussed in Section 2.1, the ALS equips each aircraft
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Figure 3.3 ALS model for sortie generation.

with numerous sensors that detect the current state of critical systems of the aircraft.

The sensors of the plane are programmed to send a signal to ground maintenance

informing them of systems with impeding failures. This allows for the parts necessary

for maintenance to be ordered well before the actual maintenance action must occur.

Therefore, a new model is needed to describe the ALS sortie generation process. This

model is now presented in full detail.

The ALS model consists of six nodes: pre-flight, sortie, troubleshoot, a fork-

join node, turnaround, and munitions upload. The fork-join node consists of five

substations that denote five critical systems of an aircraft that needs maintenance.

Figure 3.3 shows the model.

At first glance, the ALS and base model appear to be extremely similar. This

is in large part due to rigid aspects of the sortie generation process. In fact, the

pre-flight, sortie, turnaround, and munitions upload nodes are unchanged from the

base model. The ALS will not impact how these activities occur within the sortie

generation process.

One of the noticeable differences is the absence of the order delay and order

nodes. As previously discussed, the ALS allows maintainers to know of impeding

failures to critical systems. The ALS uses the JDIS, discussed in Section 2.1, to

automatically order the parts required for maintenance action with the appropriate

lead-time so that all parts are on hand when the action must take place. This means
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that maintainers will no longer need to order parts to complete maintenance on an

aircraft, so both of the nodes are not included in the ALS model.

In addition, the response time for the troubleshoot node is decreased from the

base model. This is done to account for the decreased amount of time required

to perform diagnostics when an ALS is in place. Much of the diagnostic testing

that occurs in the current sortie generation process is automated by the prognostic

sensors included in the ALS. This reduces the amount of resources and time required

to complete the troubleshooting activities. Due to a reduced service time, the mean

time for the troubleshoot node is decreased. Since it is unknown how drastically

this time will be reduced, numerical comparisons are presented in Chapter 4 which

vary the percentage of time that the ALS decreases troubleshooting activities. This

analysis will include the case when the service time is zero, as would be the case for

an ALS that has perfect prognostics.

Finally, the maintenance fork-join node has a minor difference in the ALS

model as opposed to the base model. The sensors of the ALS and moreover the

PHM, previously discussed in Section 2.1, may be able to eliminate false alarms [9].

This allows the penalty incurred when a false alarm occurs to be zero in the ALS

model. The penalty is set to zero as the probabilistic branching method for fork-join

nodes must include the possibility of no paths being visited. An analysis of this

penalty is presented in Chapter 4.

3.4 Analytical Comparison of the Base and ALS Models

This section provides a simple analytical proof that the sortie generation pro-

cess will be positively impacted when an ALS is incorporated. Doing so requires

close examination of the differences between the base model and the ALS model.

The differences in modeling are considered in the context of the MVA heuristic to
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determine the analytical difference between the two models. This difference will

show the advantage of incorporating autonomic logistics in airbase operations.

The base model and ALS model differ in the manner by which ordering is

accomplished. The base model requires the customer to go through the pre-flight

node, then the sortie node, then enters a fork-join node where it is processed simul-

taneously in the troubleshoot and order nodes. The ALS model does not contain

an order node. This is one of the major advantages of an ALS. With the prognostic

capability of autonomic logistics, maintainers always have an appropriate lead-time

to have needed spare parts on hand. This provides an advantage to completing the

sortie generation process since it eliminates a node that the aircraft would have to

visit without an ALS present.

The models also differ in two other minor aspects; the troubleshoot and mainte-

nance nodes. Since the ALS relies on prognostic equipment to perform the majority

of system checks, it is anticipated that the amount of time spent troubleshooting

the aircraft on the ground will be drastically reduced. Also, the ALS is intended to

eliminate false alarms caused by identifying a needed repair that does not exist [19].

For this reason, a penalty is added to the maintenance fork-join node when a false

alarm occurs. This penalty mimics the fact that time is spent determining that a

false alarm has occurred as opposed to an actual failure. The penalty is zero for the

ALS model, since theoretically a false alarm will never occur.

With the remainder of the network being the same, analysis of the difference

between the networks reduces to examination of these four nodes: troubleshoot, order

delay, order, and maintenance. Figure 3.4 shows how these nodes are configured in

the two models.

Finding the response time of each node is the first step in performing the MVA

algorithm. The response time for a node or substation is given by

Ri(k) =
k

µi(k)
pi(k|K). (3.28)
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Figure 3.4 Differences between base and ALS models.

This is suitable for regular nodes, but more work is required for finding the total

response time for a fork-join node. Letting θi(k) = 1/Ri(k), the equation is

E[max
j∈J

{tj(k)}] =

∑
j∈J

1

θj(k)
−

∑
j∈J

∑

l>j∈J

1

θj(k) + θl(k)
+ · · ·+ (−1)J+1 1∑

m∈J θm(k)
. (3.29)

First, we will examine the difference in the maintenance node. As previously

described, the difference in the maintenance nodes of the two models lies in the

penalty, defined as Rp(n), of the base model. The models for this thesis have five

paths in the maintenance fork-join node. This means there are 25 = 32 distinct

paths that are possible when an aircraft arrives at this node. Both models compute

response times exactly the same for thirty-one of these combinations. The lone

exception is when no paths are taken. For the base model, this is the event of a false

alarm, where diagnostic equipment reported a failure where one does not exist. The

ALS model assumes that no false alarms occur thanks to its prognostic approach.

To account for this difference, Rp(n) = c where c is set to 1 (hr) account for time

spent working maintenance when no maintenance occurs for the base model. For the

ALS model, c = 0 since it is assumed that no false alarms occur. Anytime the base

model has a non-zero c value, this will obviously result in a higher response time for

the base model. Now we examine the other three nodes that vary between the two

models.
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As seen in Figure 3.4, the fork-join node in the base model containing the

troubleshoot, order delay, and order nodes is replaced in the ALS model by a trou-

bleshoot node. The reason for this is that the ALS gives maintainers prior knowledge

of impending maintenance actions, and therefore have all parts on hand when main-

tenance must be performed on an aircraft. Another bonus of the ALS is that the

troubleshoot response time is reduced since much of the base model diagnostic work

is replaced by the prognostic capabilities of the ALS.

For the comparison of the nodes differing between the models, assume the

response time for the troubleshoot node is the same for both models. Let R1 be the

mean response time for the troubleshoot node, R2 be the mean response time for the

order delay node, and R3 be the mean response time for the order node. This allows

us to represent the total response time for the set of nodes being examined for the

base model RB, as

RB = R1 +

[
R2 + R3 − 1

1
R2

+ 1
R3

]
, (3.30)

and for the ALS model as

RA = R1. (3.31)

The conjecture is that the total response time for the set of nodes in ALS model will

be smaller than that for the base model.

Proposition 3.1 The ALS-enhanced sortie generation process will always yield a

higher sortie generation rate than a non-ALS-enhanced system, i.e., λA > λB
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Proof. We seek to show that λA > λB will always be true. We start by showing

RB > RA.

R2 + R3 − 1
1

R1
+ 1

R2+R3

= R2 + R3 − R1(R2 + R3)

R1 + R2 + R3

=
(R1 + R2 + R3)

2 −R1(R2 + R3)

R1 + R2 + R3

=
R2

1 + 2R1(R2 + R3) + (R2 + R3)
2 −R1(R2 + R3)

R1 + R2 + R3

=
R2

1 + R1(R2 + R3) + (R2 + R3)
2

R1 + R2 + R3

> 0,

which implies

RB = R1 + R2 + R3 − 1
1

R1
+ 1

R2+R3

> R1

= RA. (3.32)

Equation (3.32) clearly shows that for non-negative mean response times for

the order delay and order nodes, the base model will yield higher response times.

Since all mean response times will be greater than zero, the ALS model will have

a lower response time for the set of nodes. Therefore, both differences between the

models result in lower mean response times for the nodes in question.

Now it is necessary to examine the impact on the remainder of the network.

Let vrRr be the response times multiplied by their respective visit ratios for all other

nodes in the system, and let vARA be this calculation for the ALS node set previously

examined and vBRB for the calculation for the base model node set. The cycle times
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for the models is then

CTB = vrRr + vBRB (3.33)

CTA = vrRr + vARA (3.34)

Since vB = vA we know CTA < CTB since RA < RB. Examining the through-

put equations, we see that

λB =
KvB

CTB

(3.35)

λA =
KvA

CTA

(3.36)

which implies

λA > λB. (3.37)

The value λA is the throughput of the nodes for an ALS-enhanced sortie gen-

eration process. The sortie generation rate is a measure of how many sorties can

be flown during a specific time period. The throughput is a measure of how many

jobs pass through a node of the network. Thus, the throughput of the sortie node is

equivalent to the the sortie generation rate. This means the sortie generation rate

for a base that uses the ALS will be higher than that for the same base without

the ALS. This result is significant for autonomic logistics as it proves the underlying

assumption that an ALS will positively impact the sortie generation rate. A main

goal of implementing autonomic logistics is to provide commanders with a tool so

that they can reach desired sortie generation rates. Current sortie generation rates

are heavily reliant on stockpiled spare parts, skilled maintainers, and the quantity of

maintenance personnel and diagnostic equipment. The ALS eliminates the need to

stockpile spare parts and may reduce resource level requirements. It eliminates the

need to stockpile parts with its built-in ordering system to provide the needed lead

time to have only those parts necessary for maintenance actions to be completed in
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the near future. The diagnostic equipment requirements are reduced by the prog-

nostic sensors added to the plane as part of the ALS. While the result shows that

sustaining the level of resources will induce a higher sortie generation rate with an

ALS, it also implies that the sortie generation rate of current operations is attainable

with fewer resources. This will be demonstrated numerically in the next chapter.
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4. Numerical Results

4.1 Formal Description of Comparisons

The purpose of this chapter is to numerically compare the analytical ALS

and Base model, as well as the LCOM simulations for each of the models. These

numerical results provide a better understanding of the impact of ALS on the sortie

generation process. The performance measure that was examined is the throughput

of the sortie node which corresponds to the sortie generation rate measured in sorties

flown per hour (sorties/hr). The comparisons show how the sortie generation rate

behaves for both models when we vary the total number of aircraft in system, the

number of servers in the maintenance nodes, and the mean service times of the

troubleshoot and order nodes.

The ALS and base models were coded in MATLABr using the MVA algorithm

of Dietz and Jenkins [6] presented in Section 3.1. The LCOM simulations were

conducted using WinLCOM 2000.D. These simulations were designed to operate in

the same manner as the analytical models, using exponential distributions, fly-when-

ready schedules, and other similar aspects from the analytical models. Sample input

files of LCOM and the MATLABr codes may be found in the appendix of this thesis.

An initial run of each model was made with fixed parameter values, with mean

service times given in hours. These results were compared directly with the LCOM

simulation runs to asses the adequacy of the queueing network models. The values

used in this initial case are the control values for the remainder of the comparisons

so that the sensitivity of the models to perturbations made be assessed.

Table 4.1 shows how the sortie generation rates of the base model and ALS

model compared with the LCOM results. The percentage error ranges from 0.01%

to 6.3%. The results indicate that the analytical models closely approximate the

results of the simulation run in LCOM.
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Table 4.1 Base and ALS sortie generation rate (sorties/hr) versus simulation.

K Base LCOM ALS LCOM
10 1.974 1.953 2.227 2.210
20 3.791 3.792 4.195 4.254
30 5.206 5.340 5.558 5.810
40 6.069 6.377 6.275 6.594
50 6.510 6.828 6.618 6.943

The first comparison was designed to investigate how sortie generation rates

react and compare when adjusting the total number of aircraft in the system. The

results are given for K = 10, 20, 30, 40, 50, 60 in Tables 4.4 and 4.5. These values are

chosen to demonstrate how the model reacts to this parameter. However, the ma-

jority of airbases will not contain more than 30 aircraft. Exceptions to this do occur,

and provide another reason for examining these values. The sortie generation rates

for both models were graphed to demonstrate the trends in each model. Table 4.2

provides definitions for each station’s designator and the different outputs reported.

Table 4.2 Descriptions of various network nodes.

Acronym Node Description
PF Pre-Flight
Sortie Sortie
TS Troubleshoot
O D Order Delay
O Order
M1 Maintenance substation 1 (airframe)
M2 Maintenance substation 2 (electrical/hydraulic)
M3 Maintenance substation 3 (engine/propulsion)
M4 Maintenance substation 4 (avionics)
M5 Maintenance substation 5 (radar/weapons control)
TA Turnaround
MU Munitions Upload
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Table 4.3 Definitions of output variables.

Variable Definition
R Response time (service time + waiting time)
λ Throughput - service completions per hour
λsortie Sortie generation rate (sorties/hour)
Q Average number of customers in station
U Single-server: average percent of time busy
U Multi-server: average no of servers busy

Tables 4.4 and 4.5 show that the ALS model provides improvements in all

aspects over the base model. The sortie generation rate continued to improve as

aircraft are added to the system. Figure 4.1 graphically depicts the sortie generation

rate as a function of the total number of aircraft in system.
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Figure 4.1 Sortie generation rate as a function of K.

Next, the false alarm penalty was examined. The probability of the fork-

join node experiencing the occurrence of no paths is used to model the real-world

occurrence of false alarms. The false alarm penalty is adjusted by adding a mean

service time. The false alarm penalty can be added to the model and the ALS still

experienced higher sortie generation rates. With 10 aircraft in system, the sortie

generation rate for the base model was 1.9744 and for the ALS model was 2.2008.
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Table 4.4 Base model versus ALS model results.

Base Model ALS model
Station R λ Q U R λ Q U

K=10 PF 0.250 2.078 0.520 0.520 0.250 2.345 0.586 0.586
Sortie 2.000 1.974 3.949 3.949 2.000 2.227 4.455 4.455
TS 0.500 0.696 0.348 0.348 0.250 0.785 0.196 0.196
O D 0.050 0.197 0.010 0.010 – – – –
O 2.000 0.197 0.393 0.393 – – – –
M1 2.848 0.118 0.337 0.260 2.956 0.134 0.395 0.294
M2 2.284 0.272 0.620 0.616 2.289 0.306 0.701 0.695
M3 2.422 0.146 0.354 0.347 2.437 0.165 0.402 0.391
M4 1.989 0.188 0.374 0.282 2.072 0.212 0.439 0.318
M5 1.222 0.320 0.391 0.381 1.231 0.361 0.445 0.430
TA 0.750 2.078 1.559 1.559 0.750 2.345 1.759 1.758
MU 0.502 2.078 1.042 1.039 0.502 2.345 1.178 1.172

K=20 PF 0.250 3.990 0.998 0.998 0.250 4.415 1.104 1.104
Sortie 2.000 3.791 7.581 7.581 2.000 4.195 8.389 8.389
TS 0.500 1.337 0.668 0.668 0.250 1.479 0.370 0.370
O D 0.050 0.377 0.019 0.019 – – – –
O 2.000 0.377 0.754 0.754 – – – –
M1 4.070 0.227 0.925 0.500 4.463 0.252 1.122 0.553
M2 2.398 0.521 1.250 1.183 2.444 0.577 1.410 1.310
M3 2.617 0.281 0.735 0.665 2.681 0.311 0.833 0.736
M4 2.969 0.361 1.072 0.541 3.299 0.399 1.318 0.599
M5 1.343 0.615 0.826 0.732 1.383 0.680 0.941 0.810
TA 0.762 3.990 3.041 2.993 0.771 4.415 3.402 3.312
MU 0.528 3.990 2.106 1.995 0.541 4.415 2.389 2.208

K=30 PF 0.250 5.480 1.370 1.370 0.250 5.850 1.463 1.463
Sortie 2.000 5.206 10.412 10.412 2.000 5.558 11.116 11.116
TS 0.500 1.836 0.918 0.918 0.250 1.960 0.490 0.490
O D 0.050 0.518 0.026 0.026 – – – –
O 2.000 0.518 1.036 1.036 – – – –
M1 6.166 0.312 1.924 0.687 7.046 0.333 2.347 0.733
M2 2.657 0.716 1.902 1.625 2.761 0.764 2.111 1.735
M3 2.927 0.386 1.128 0.914 3.035 0.412 1.249 0.975
M4 4.843 0.496 2.401 0.744 5.698 0.529 3.015 0.794
M5 1.543 0.845 1.303 1.005 1.615 0.902 1.456 1.073
TA 0.830 5.480 4.546 4.110 0.867 5.850 5.071 4.388
MU 0.615 5.480 3.370 2.740 0.657 5.850 3.845 2.925
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Table 4.5 Base model versus ALS model results.

Base Model ALS model
Station R λ Q U R λ Q U

K=40 PF 0.250 6.388 1.597 1.597 0.250 6.605 1.651 1.651
Sortie 2.000 6.069 12.137 12.137 2.000 6.275 12.550 12.550
TS 0.500 2.140 1.070 1.070 0.250 2.213 0.553 0.553
O D 0.050 0.604 0.030 0.030 – – – –
O 2.000 0.604 1.208 1.208 – – – –
M1 9.260 0.364 3.369 0.800 10.565 0.376 3.974 0.828
M2 2.988 0.835 2.494 1.895 3.104 0.863 2.679 1.959
M3 3.245 0.449 1.458 1.065 3.343 0.465 1.554 1.101
M4 8.121 0.578 4.692 0.867 9.702 0.598 5.797 0.896
M5 1.761 0.984 1.734 1.171 1.832 1.018 1.865 1.211
TA 0.973 6.388 6.217 4.791 1.039 6.605 6.866 4.954
MU 0.772 6.388 4.928 3.194 0.841 6.605 5.553 3.303

K=50 PF 0.250 6.853 1.713 1.713 0.250 6.966 1.742 1.742
Sortie 2.000 6.510 13.020 13.020 2.000 6.618 13.235 13.235
TS 0.500 2.296 1.148 1.148 0.250 2.334 0.583 0.583
O D 0.050 0.648 0.032 0.032 – – – –
O 2.000 0.648 1.296 1.296 – – – –
M1 12.920 0.390 5.042 0.859 14.365 0.397 5.699 0.873
M2 3.272 0.895 2.929 2.032 3.359 0.910 3.057 2.066
M3 3.475 0.482 1.675 1.143 3.540 0.490 1.735 1.161
M4 13.044 0.620 8.085 0.930 15.371 0.630 9.685 0.945
M5 1.929 1.056 2.037 1.257 1.978 1.074 2.124 1.277
TA 1.163 6.853 7.969 5.140 1.240 6.966 8.636 5.225
MU 0.968 6.853 6.631 3.426 1.046 6.966 7.287 3.483

K=60 PF 0.250 7.087 1.772 1.772 0.250 7.148 1.787 1.787
Sortie 2.000 6.733 13.465 13.465 2.000 6.790 13.581 13.581
TS 0.500 2.374 1.187 1.187 0.250 2.395 0.599 0.599
O D 0.050 0.670 0.034 0.034 – – – –
O 2.000 0.670 1.340 1.340 – – – –
M1 16.551 0.404 6.680 0.888 17.912 0.407 7.291 0.896
M2 3.464 0.926 3.208 2.102 3.521 0.934 3.288 2.120
M3 3.615 0.499 1.802 1.182 3.653 0.503 1.837 1.192
M4 19.610 0.641 12.570 0.962 22.651 0.647 14.644 0.970
M5 2.036 1.092 2.224 1.300 2.066 1.102 2.276 1.311
TA 1.357 7.087 9.617 5.315 1.430 7.148 10.224 5.361
MU 1.165 7.087 8.256 3.544 1.239 7.148 8.856 3.574
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With 50 aircraft in the system, the sortie generation rate for the base model was

6.5100 and for the ALS model was 6.6086. This trend held even in the unrealistic

case when the penalty for a false alarm was set to 10 hours.

The next comparison examined the impact of reduced resource level for the

maintenance node in the ALS model as compared to the base model with a full

complement of maintenance servers. This was done by trial and error to find the

cases where the ALS model outperforms the base model via sortie generation rate.

The results are depicted in Table 4.7.

The results demonstrate the capability of the ALS model with fewer main-

tenance servers to achieve the sortie generation rate of the base model with a full

complement of servers. For the case of 10 aircraft in system, the extreme case of sin-

gle servers for each maintenance substation in the ALS model still exceeded that of

the base model. When K = 30, the ALS model produced a higher sortie generation

rate with one fewer resource at maintenance substation 2. While unlikely, when more

than 30 aircraft are in the system, the ALS required all servers to outperform the

base model. This is due to the large number of aircraft severely constraining the full

complement of servers. When more servers were added to the base model, the ALS

model outperformed that result with fewer servers. Allowing the base model to have

3 servers at all maintenance substations gave a sortie generation rate of 7.1278 with

50 aircraft in the system. With this number of aircraft in system, the ALS model

with fewer servers (2,3,3,2,2) gave a sortie generation rate of 7.1855. The results

Table 4.6 Sortie generation rate (sortie/hr) as false alarm penalty increases.

Penalty ALS Base
0 2.227 1.996
1 2.201 1.974
2 2.175 1.953
10 1.987 1.800
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Table 4.7 Base versus ALS sortie generation rate (sorties/hr) with fewer servers.

No. of Servers K = 10 K = 30 K = 50
Base - 1,3,2,1,2 1.974 5.206 6.510
ALS - 1,3,2,1,2 2.186 5.507 6.603
ALS - 1,2,2,1,2 2.176 5.306 6.211
ALS - 1,1,1,1,1 2.041 3.203 3.203

of this comparison show that ALS-enhanced operations may achieve a comparable

sortie generation rate of the current operations despite having fewer resources.

The final comparison was to adjust the mean service time at the troubleshoot

node for the ALS model. Since there is debate as to how much the ALS will re-

duce the time required for troubleshoot activities, this was examined by scaling

the mean troubleshoot duration by 0%, 20%, 40%, 60%, 80%, and 100% of the base

model control values. The results in Table 4.8 show that ALS-enhanced operations

will outperform current operations for any reduction of time, even in the case where

the mean service time for the ALS troubleshoot node is 100% of the base model.

Table 4.8 Sortie generation rate (sorties/hr) when service time (T) reduced in trou-
bleshoot.

Base ALS
K T T 0.8T 0.6T 0.4T 0.2T 0T
5 0.997 1.107 1.115 1.124 1.133 1.142 1.151
20 3.791 4.131 4.156 4.182 4.208 4.234 4.260
35 5.704 5.943 5.959 5.974 5.989 6.005 6.020
50 6.510 6.603 6.609 6.614 6.621 6.626 6.632

The graph of the results for K = 35 and K = 50 can be found in Figure 4.2. This re-

sult demonstrates that ALS-enhanced operations provide an airbase with an increase

in sortie generation rate. It is interesting to note that, for the analytical models pre-

sented in this thesis, the ALS model outperformed the base model regardless of the

percentage of the mean service time for troubleshoot activities were used for the

ALS model. This implies that, despite the current unknown amount of reduction
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for troubleshoot service time, ALS-enhanced operations are still expected to yield

higher sortie generation rates than current operations.
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Figure 4.2 Sortie generation rate as time for troubleshoot decreases in ALS.

In this chapter, the ALS was shown to achieve higher sortie generation rates

with any number of aircraft in system, a false alarm penalty, and any reduction in

mean service time for the troubleshoot activity. Moreover, the number of servers

at the maintenance substations can be reduced in ALS-enhanced operations and

achieve the sortie generation rate of current operations. These results have illustrated

that the ALS will positively impact the sortie generation process with equivalent or

reduced resource levels.
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5. Conclusions and Future Research

The primary objective of this thesis was to examine the sortie generation pro-

cess and the changes it would experience when autonomic logistics are implemented.

This work led to the development of two models, one for current airbase operations

and one for ALS-enhanced operations. The base and ALS models are closed queueing

networks containing a fork-join node. Modeling the sortie generation process in this

manner required assumptions such as a fly-when-ready schedule, a perfect perform-

ing PHM, and exponentially distributed service times. For the given assumptions

the ALS model was analytically shown to always produce higher sortie generation

rates than the base model.

The output of the queueing network models were then compared to the sim-

ulated results of the Logistics Composite Model (LCOM), the Air Force tool for

determining sortie generation rate. The queueing network models were then used

to numerically examine the sortie generation rate under several scenarios. These

model comparisons, with the given problem assumptions, demonstrated that the

ALS-model will yield a higher generation rate than the base model.

The first numerical comparison performed between the two models was de-

signed to investigate how the models compared as the number of aircraft in the

system increases. This comparison numerically demonstrated the analytical result

that the ALS model will always outperform the base model, with both models sub-

jected to the underlying assumptions. This result is important as the reason for

implementing autonomic logistics is to positively impact the sortie generation pro-

cess for any number of aircraft at an airbase.

A major advantage of autonomic logistics that is assumed in the current liter-

ature is that implementing an ALS into the sortie generation process would allow a

base to achieve the sortie generation rate of current operations with fewer resources

[9, 19]. In the case where current operations are compared to the ALS model with
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single-server maintenance nodes and 10 aircraft, the sortie generation rate is higher

for the ALS model. This provides evidence that ALS-enhanced operations with

fewer resources can meet the sortie generation rate of current operations with a full

complement of resources. As the number of aircraft increases, more resources are

required for the ALS to outperform the base model. At 30 aircraft a server can be

removed from maintenance substation 2 and the sortie generation rate is higher for

the ALS model than the base model. For more than 30 aircraft, the ALS requires

an equal number of resources to outperform the base model. These results, all of

which are subjected to the assumptions of the models, show that the ALS using

fewer resources can indeed achieve the sortie generation rate of current operations.

The two models were also compared for differing mean service times in the

troubleshoot node of the ALS model. The results demonstrated that ALS-enhanced

operations will yield a higher sortie generation rate even if the mean service time for

the ALS model is the same as in the base model where both models are subjected to

the assumptions of the models. Although the duration of the troubleshoot activity

with an implemented ALS is not well understood, this result shows that autonomic

logistics will positively impact the sortie generation process despite the reduction in

mean service time for troubleshooting activities.

These combined results provide the military operations research community

with analytical and numerical evidence that implementing autonomic logistics will

positively impact the sortie generation process. Current literature on the ALS as-

sumes that a positive impact will occur, however, this was based only on speculation

on the advantages of autonomic logistics. Modeling the basics of pre-ALS and ALS

airbase operations allowed for comparisons that clearly illustrate the improved sor-

tie generation rates for the ALS model. In addition, the numerical results confirm

the assumption that an airbase will be able to maintain current sortie generation

rates using reduced resource levels for maintenance activities. This conclusion ap-
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pears to be heavily influenced by the presupposition of a perfect prognostics health

management system.

The comparison of the models presented in this thesis will prove valuable once

the ALS has been implemented and actual performance data can be collected. One

major consideration is the handling of maintenance actions in an ALS sortie genera-

tion process. In theory, all maintenance actions will become scheduled as maintainers

will have information regarding impending failures. It is not possible to definitively

know that current probabilities of required maintenance actions will remain the same

under the ALS. Should repairs be made to avoid a failure, probabilities could increase,

but if subsystems experience fewer failures due to a better maintained aircraft, these

probabilities could decrease. These items and aspects yet uncovered could further

impact future models of the ALS sortie generation process.

The work of this thesis would more accurately reflect real-world conditions

if the service time distributions were allowed to be a distribution other than the

exponential. This does not present a problem for this thesis as the intent was to

examine differences between current operations and ALS-enhanced operations. How-

ever, when implemented ALS data on service time distributions exist, it would be of

interest to remove this assumption and subsequently apply the more general results

of Hackman and Dietz [8].

A possible extension to this thesis would be to analytically model the prog-

nostics and health management (PHM) system of the ALS. The main interest here

would be to examine how the Joint Distributed Information System (JDIS) orders

the spare parts required for future maintenance actions. Since this part of the net-

work is somewhat disparate from the remainder of the sortie generation process, an

approach to modeling the ordering activity of JDIS would be the use of queueing

networks with signals. This methodology is relatively novel; therefore this approach

would require extension of known queueing network results to incorporate signals.
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The sortie generation rates produced by the models in this thesis assume a

fly-when-ready concept which means that, as soon as an aircraft is available to

fly a sortie, it will fly a sortie. This assumption could closely emulate war-time

operations, but it is not consistent with the peace-time environment. Due to the

nature of queueing networks, it would be difficult to relax this assumption. It is

conjectured that a simulation study would allow for a mission schedule, and thus,

be more appropriate for this sort of analysis.
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Appendix A. Base Model Matlabr Codes
%*********************************************************************
% Program phase16
%
% The purpose of this MATLAB program is to compute the performance
% measures of the sortie generation process as described in Chapter 3.
% The process is a 6 node queueing network where the third and fourth
% nodes are fork-join nodes, allowing simultaneous service of
% troubleshoot, order delay and order activities for node three and
% for node four up to five maintenance activities.
% Author: Lt. Nicholaus Yager
% Last Revision: 1/28/03
%
%*********************************************************************
clear;
%number of jobs in system
K = 10;
%service times for normal nodes
s = [.25 2 .6 2 .75 .5];
%service times for fork-join substations
s(41:45) = [2.2 2.27 2.37 1.5 1.19]; s(31:33) = [.5 .05 2];
%number of servers for normal nodes
r = [K K K K 6 4];
%number of servers for fork-join substations
r(41:45) = [1 3 2 1 2]; r(31:33) = [K K K];
%visit ratios
v = [1 .95 .335 .335 1 1];
%probability of needing service at a fork-join substations
Q(41:45)= [.17 .39 .21 .27 .46]; Q(31:33)= [1 .28218 .28218];
%Lines 33-44 initialize the MVA algorithm
%pi(a,1,1) is probability of zero jobs at node a
%with zero total jobs in system
for a = 1:6

pi(a,1,1) = 1;
end clear a; for a = 41:45

pi(a,1,1) = 1;
end clear a; for a = 31:33

pi(a,1,1) = 1;
end
%n loops the algorithm for 1 to K, the iterive part of MVA
for n = 2:K+1

%Calculates response time for maintenance substation
for e = 41:45

clear f;
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for f = 2:n
sumRfj(f) = ((f-1)/min((f-1)/s(e),r(e)/s(e)))*pi(e,f-1,n-1);

end
%response time calcs for fork-join substations
Rfj(e,n) = sum(sumRfj);
theta(e,n) = 1/Rfj(e,n);

end
%get_EMaxT1 is a function that calculates the response time for the
%entire maintenance node
sumEmxTtimespi1(n) = get_EmaxT1(theta(:,n));
clear theta2; clear e;
%Calculates response time for maintenance substation
for e = 31:33

clear f;
for f = 2:n

sumRfj(f) = ((f-1)/min((f-1)/s(e),r(e)/s(e)))*pi(e,f-1,n-1);
end
%response time calcs for fork-join substations
Rfj(e,n) = sum(sumRfj);
theta3(e,n) = 1/Rfj(e,n);

end
%get_EmaxT3 calculates the response time for the fork-join node
%containing troubleshoot, order delay and order
sumEmxTtimespi2(n) = get_EmaxT3(theta3(:,n));
for i = 1:6

for j = 2:n
sumR(j) = ((j-1)/min((j-1)/s(i),r(i)/s(i)))*pi(i,j-1,n-1);

end
%response time calc for normal nodes
R(i,n) = sum(sumR);

end
%needed summation for cycle time calculation
for viloop = 1:6

viRsum(viloop)=v(viloop)*R(viloop,n);
end
viR(n)=sum(viRsum(1:2))+sum(viRsum(5:6));
%calculates cycle time for a network containing a fork-join node
newCT1(n)=viR(n)+v(4)*sumEmxTtimespi1(n)+v(3)*sumEmxTtimespi2(n);
for fj = 41:45

%throughput calculation for fork-join substations
lambdafj(fj,n)=v(4)*(n-1)*Q(fj)/(newCT1(n));
%number of jobs at fork-join substations
Ql(fj,n)=Rfj(fj,n)*lambdafj(fj,n);
%utilization at fork-join substations
U(fj,n)=s(fj)*lambdafj(fj,n);
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end
for fj = 31:33

%throughput calculation for fork-join substations
lambdafj(fj,n)=v(4)*(n-1)*Q(fj)/(newCT1(n));
%number of jobs at fork-join substations
Ql(fj,n)=Rfj(fj,n)*lambdafj(fj,n);
%utilization at fork-join substations
U(fj,n)=s(fj)*lambdafj(fj,n);

end
%throughput calculation for normal nodes
for d = 1:6

lambda(d,n) = v(d)*(n-1)/(newCT1(n));
end
clear i;
%lines 111-123: recalculation of fork-join(4) pi values
for i = 41:45

for c = 2:n
pi(i,c,n)=(lambdafj(i,n)/min((c-1)/s(i),r(i)/s(i)))*

pi(i,c-1,n-1);
end
%vector of p(i,n,N) values where 1>n>=N
for l = 2:n

sumpi1(l)=pi(i,l,n);
end
sumpi=sum(sumpi1);
%finds p(i,0,N)
pi(i,1,n)=1 - sumpi;

end
%lines 124-138: recalculation of fork-join(3) pi values
clear i; clear j;
for i = 31:33

%finds p(i,n,N) values for n>=1 given N
for c = 2:n

pi(i,c,n)=(lambdafj(i,n)/min((c-1)/s(i),r(i)/s(i)))*
pi(i,c-1,n-1);

end
%vector of p(i,n,N) values where 1>n>=N
for l = 2:n

sumpi1(l) = pi(i,l,n);
end
sumpi = sum(sumpi1);
%finds p(i,0,N)
pi(i,1,n) = 1 - sumpi;

end
%lines 139-153: recalculation of standard pi values
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clear i; clear j;
for i = 1:6

%finds p(i,n,N) values for n>=1 given N
for j = 2:n

pi(i,j,n)=(lambda(i,n)/min((j-1)/s(i),r(i)/s(i)))*
pi(i,j-1,n-1);

end
%vector of p(i,n,N) values where 1>n>=N
for l = 2:n

sumpi12(l) = pi(i,l,n);
end
sumpi2 = sum(sumpi12);
%finds p(i,0,N)
pi(i,1,n) = 1 - sumpi2;

end
for z = 1:6

%number of jobs at node i
Ql(z,n)=R(z,n)*lambda(z,n);
%utilization at node i
U(z,n)=s(z)*lambda(z,n);

end
end
%lines 162-170 display a table of the results
rshow=[R(1,n); R(2,n); Rfj(31,n); Rfj(32,n); Rfj(33,n); Rfj(41,n);
Rfj(42,n);

Rfj(43,n); Rfj(44,n); Rfj(45,n); R(5,n); R(6,n)];
lambdashow=[lambda(1,n); lambda(2,n); lambdafj(31,n);
lambdafj(32,n);

lambdafj(33,n); lambdafj(41,n); lambdafj(42,n); lambdafj(43,n);
lambdafj(44,n); lambdafj(45,n); lambda(5,n); lambda(6,n)];

qlength = [Ql(1,n); Ql(2,n); Ql(31,n); Ql(32,n); Ql(33,n);
Ql(41,n);

Ql(42,n); Ql(43,n); Ql(44,n); Ql(45,n); Ql(5,n); Ql(6,n)];
ushow = [U(1,n); U(2,n); U(31,n); U(32,n); U(33,n); U(41,n);
U(42,n);

U(43,n); U(44,n); U(45,n); U(5,n); U(6,n)];
table = [rshow lambdashow qlength ushow]
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%******************************************************************
% Program get_EmaxT
%
% The purpose of this MATLAB program is to compute expected maximum
% of the time required to complete service in the maintenance
% fork-join node.
% Author: Lt. Nicholaus Yager
% Last Revision: 1/28/03
%
%******************************************************************
function EmaxT = get_EmaxT(theta2);
%omega defines the state space for the fork-join node
omega = [1 1 1 1 1;41 1 1 1 1;42 1 1 1 1; 43 1 1 1 1; 44 1 1 1 1;

45 1 1 1 1; 41 42 1 1 1; 41 43 1 1 1; 41 44 1 1 1; 41 45 1 1 1;
42 43 1 1 1; 42 44 1 1 1; 42 45 1 1 1; 43 44 1 1 1; 43 45 1 1 1;
44 45 1 1 1; 41 42 43 1 1; 41 42 44 1 1; 41 42 45 1 1;
41 43 44 1 1; 41 43 45 1 1; 41 44 45 1 1; 42 43 44 1 1;
42 43 45 1 1; 42 44 45 1 1; 43 44 45 1 1; 41 42 43 44 1;
41 42 43 45 1; 41 42 44 45 1; 41 43 44 45 1; 42 43 44 45 1;
41 42 43 44 45];

%piofS is the probability of each omega row occuring
piofS = [0.157670933; 0.032294047; 0.100806007; 0.041912527;

0.058316647; 0.134312277; 0.020647013; 0.008584493; 0.011944373;
0.027509743; 0.026796533; 0.037284413; 0.085871783; 0.015501893;
0.035703263; 0.049677143; 0.005488447; 0.007636567; 0.017588197;
0.003175087; 0.007312717; 0.010174837; 0.009911047; 0.022826677;
0.031760797; 0.013205317; 0.002029973; 0.004675343; 0.006505223;
0.002704703; 0.008442743; 0.001729237];

%this loop calculates E[T] for each row of omega
for Sloop = 1:32

[w,v] = size(theta2);
if w == 45

S = omega(Sloop,:);
end
for checkloop = 1:5

if S(6-checkloop) == 1
S = S(1:5-checkloop);

end
end
clear x; clear sum1; clear sum2; clear sum3; clear sum4;
clear lastsum; clear sum11; clear lastsum1;
[w,x] = size(S);
%x=0 sets the false-alarm penalty
if x==0

EmxT(Sloop)=1;
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end
if x >= 1

for g = 1:x
sum11(g)=1/theta2(S(g));

end
sum1=sum(sum11);
%the following 3 if statements find sums required to calculate E[T]
if x>=3

sum2=(1/(theta2(S(1))+theta2(S(2))))+
(1/(theta2(S(1))+theta2(S(3))))+
(1/(theta2(S(3))+theta2(S(2))));

end
if x >=4

sum3=(-1)*(1/(theta2(S(1))+theta2(S(2))))-
(1/(theta2(S(1))+theta2(S(3))))-
(1/(theta2(S(3))+theta2(S(2))))-
(1/(theta2(S(1))+theta2(S(4))))-
(1/(theta2(S(4))+theta2(S(3))))-
(1/(theta2(S(4))+theta2(S(2))))+
(1/(theta2(S(1))+theta2(S(2))+theta2(S(3))))+
(1/(theta2(S(1))+theta2(S(4))+theta2(S(3))))+
(1/(theta2(S(1))+theta2(S(2))+theta2(S(4))))+
(1/(theta2(S(4))+theta2(S(2))+theta2(S(3))));

end
if x >=5

sum4=(-1)*(1/(theta2(S(1))+theta2(S(2))))-
(1/(theta2(S(4))+theta2(S(5))))-
(1/(theta2(S(3))+theta2(S(5))))-
(1/(theta2(S(2))+theta2(S(5))))-
(1/(theta2(S(1))+theta2(S(5))))-
(1/(theta2(S(1))+theta2(S(3))))-
(1/(theta2(S(3))+theta2(S(2))))-
(1/(theta2(S(1))+theta2(S(4))))-
(1/(theta2(S(4))+theta2(S(3))))-
(1/(theta2(S(4))+theta2(S(2))))+
(1/(theta2(S(1))+theta2(S(2))+theta2(S(3))))+
(1/(theta2(S(1))+theta2(S(2))+theta2(S(4))))+
(1/(theta2(S(1))+theta2(S(2))+theta2(S(5))))+
(1/(theta2(S(1))+theta2(S(3))+theta2(S(4))))+
(1/(theta2(S(1))+theta2(S(3))+theta2(S(5))))+
(1/(theta2(S(1))+theta2(S(4))+theta2(S(5))))+
(1/(theta2(S(2))+theta2(S(3))+theta2(S(4))))+
(1/(theta2(S(2))+theta2(S(3))+theta2(S(5))))+
(1/(theta2(S(2))+theta2(S(4))+theta2(S(5))))+
(1/(theta2(S(3))+theta2(S(4))+theta2(S(5))))-
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(1/(theta2(S(1))+theta2(S(2))+theta2(S(3))+theta2(S(4))))-
(1/(theta2(S(1))+theta2(S(2))+theta2(S(3))+theta2(S(5))))-
(1/(theta2(S(1))+theta2(S(2))+theta2(S(5))+theta2(S(4))))-
(1/(theta2(S(1))+theta2(S(5))+theta2(S(3))+theta2(S(4))))-
(1/(theta2(S(5))+theta2(S(2))+theta2(S(3))+theta2(S(4))));

end
%finds the sum of the substation response times
for p = 1:x

lastsum1(p)=theta2(S(p));
end
lastsum=sum(lastsum1);
%the following 5 if statements find E[T] as
%defined in Ch3
if x==1

EmxT(Sloop)=sum1;
end
if x==2

EmxT(Sloop)=sum1-(1/lastsum);
end
if x==3

EmxT(Sloop)=sum1-sum2+(1/lastsum);
end
if x==4

EmxT(Sloop)=sum1+sum3-(1/lastsum);
end
if x==5

EmxT(Sloop)=sum1+sum4+(1/lastsum);
end

end end
%calculates the 32 E[T]
%by multiplying by the probability of occurrence
for t = 1:32

EmxTtimespi(t) = EmxT(t)*piofS(t);
end
%sums the terms, giving the expected maximum of T
sumEmxTtimespi=sum(EmxTtimespi); EmaxT = sumEmxTtimespi; clear
theta2;
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%******************************************************************
% Program get_EmaxT3
%
% The purpose of this MATLAB program is to compute expected maximum
% of the time required to complete service in the troubleshoot,
% order delay, and order fork-join node.
% Author: Lt. Nicholaus Yager
% Last Revision: 1/28/03
%
%******************************************************************
function EmaxT = get_EmaxT(theta4);
%omega is the state space of S and piofS is the probability of each state
piofS = [0; 0.15767; 0.842328]; omega = [1 1 1; 31 1 1; 31 32 33];
for Sloop = 1:3

S = omega(Sloop,:);
%the following removes the 1’s from S
for checkloop = 1:3

if S(4-checkloop) == 1
S = S(1:3-checkloop);

end
end
clear x; clear sum1; clear sum2; clear sum3; clear sum4;
clear lastsum; clear sum11; clear lastsum1;
[w,x] = size(S);
%EmxT = E[maxT] = expected value of the maximum of T
if x == 1

EmxT(Sloop)=1/(theta4(S(1)));
end
if x == 2

EmxT(Sloop)=1/theta4(S(1))+1/theta4(S(2))-
1/(theta4(S(1))+theta4(S(2)));

end
if x == 3

EmxT(Sloop)=1/(theta4(S(1))+theta4(S(2)))+1/theta4(S(3))-
1/(theta4(S(1))+theta4(S(2))+theta4(S(3)));

end
end
%calculates the 3 E[T], and multiplies by the probability of occurrence
for t = 1:3

EmxTtimespi(t) = EmxT(t)*piofS(t);
end
%sums the terms, giving the expected maximum of T
sumEmxTtimespi=sum(EmxTtimespi); EmaxT = sumEmxTtimespi; clear
theta4;
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Appendix B. ALS Model Matlabr Code
%*******************************************************************
% Program phase23
%
% The purpose of this MATLAB program is to compute the performance
% measures of the sortie generation process as described by Dietz
% and Jenkins. The process is a 6 node queueing network where the
% fourth node is a fork-join node, allowing simlutaneous service up
% to five maintenance activities.
% Author: Lt. Nicholaus Yager
% Last Revision: 1/28/03
%
%*******************************************************************
clear;
%number of jobs in sysytem
K = 50;
%service times for normal nodes
s = [.25 2 .25 2 .75 .5];
%service times for fork-join substations
s(41:45) = [2.2 2.27 2.37 1.5 1.19];
%number of servers for normal nodes
r = [K K K K 6 4];
%number of servers for fork-join substations
r(41:45) = [1 3 2 1 2];
%visit ratios
v = [1 .95 .335 .335 1 1];
%probability of needing service at a fork-join substations
Q(41:45)= [.17 .39 .21 .27 .46];
%lines 32-38 initialize the MVA algorithm
%pi(a,1,1) is probability of zero jobs at node a
%with zero total jobs in system
for a = 1:6

pi(a,1,1) = 1;
end clear a; for a = 41:45

pi(a,1,1) = 1;
end
%n loops the algorithm for 1 to K, the iterive part of MVA
for n = 2:K+1

for e = 41:45
clear f;
for f = 2:n

sumRfj(f) = ((f-1)/min((f-1)/s(e),r(e)/s(e)))*pi(e,f-1,n-1);
end
%response time calcs for fork-join substations
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Rfj(e,n) = sum(sumRfj);
theta(e,n) = 1/Rfj(e,n);

end
%get_EmaxT1 is a function that calculates the expected maximum of T
sumEmxTtimespi1(n) = get_EmaxT1(theta(:,n));
clear theta2; clear e;
for i = 1:6

for j = 2:n
sumR(j) = ((j-1)/min((j-1)/s(i),r(i)/s(i)))*pi(i,j-1,n-1);

end
%response time calc for normal nodes
R(i,n) = sum(sumR);

end
%needed summation for cycle time calculation
for viloop = 1:6

viRsum(viloop)=v(viloop)*R(viloop,n);
end
viR(n)=sum(viRsum(1:3))+sum(viRsum(5:6));
%calculates cycle time for a network containing a fork-join node
newCT1(n)=viR(n)+v(4)*sumEmxTtimespi1(n);
for fj = 41:45

%throughput calculation for fork-join substations
lambdafj(fj,n)=v(4)*(n-1)*Q(fj)/(newCT1(n));
%number of jobs at fork-join substations
Ql(fj,n)=Rfj(fj,n)*lambdafj(fj,n);
%utilization at fork-join substations
U(fj,n)=s(fj)*lambdafj(fj,n);

end
%throughput calculation for normal nodes
for d = 1:6

lambda(d,n) = v(d)*(n-1)/(newCT1(n));
end
clear i;
%recalculation of fork-join pi values
for i = 41:45

%finds p(i,n,N) values for n>=1 given N
for c = 2:n

pi(i,c,n)=(lambdafj(i,n)/min((c-1)/s(i),r(i)/s(i)))*
pi(i,c-1,n-1);

end
%vector of p(i,n,N) values where 1>n>=N
for l = 2:n

sumpi1(l) = pi(i,l,n);
end
sumpi = sum(sumpi1);
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%finds p(i,0,N)
pi(i,1,n) = 1 - sumpi;

end
clear i; clear j;
%begin pi calcs for normal nodes
for i = 1:6

%finds p(i,n,N) values for n>=1 given N
for j = 2:n

pi(i,j,n)=(lambda(i,n)/min((j-1)/s(i),r(i)/s(i)))*
pi(i,j-1,n-1);

end
%vector of p(i,n,N) values where 1>n>=N
for l = 2:n

sumpi12(l) = pi(i,l,n);
end
sumpi2 = sum(sumpi12);
%finds p(i,0,N)
pi(i,1,n) = 1 - sumpi2;

end
for z = 1:6

%number of jobs at node i
Ql(z,n)=R(z,n)*lambda(z,n);
%utilization at node i
U(z,n)=s(z)*lambda(z,n);

end
end
%the remainder of the code prints the table of results
rshow=[R(1,n); R(2,n); R(3,n); Rfj(41,n); Rfj(42,n); Rfj(43,n);
Rfj(44,n);

Rfj(45,n); R(5,n); R(6,n)];
lambdashow=[lambda(1,n); lambda(2,n); lambda(3,n); lambdafj(41,n);

lambdafj(42,n); lambdafj(43,n); lambdafj(44,n); lambdafj(45,n);
lambda(5,n); lambda(6,n)];

qlength = [Ql(1,n); Ql(2,n); Ql(3,n); Ql(41,n); Ql(42,n);
Ql(43,n); Ql(44,n);

Ql(45,n); Ql(5,n); Ql(6,n)];
ushow = [U(1,n); U(2,n); U(3,n); U(41,n); U(42,n); U(43,n);
U(44,n); U(45,n);

U(5,n); U(6,n)];
table = [rshow lambdashow qlength ushow]
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%******************************************************************
% Program get_EmaxT
%
% The purpose of this MATLAB program is to compute expected maximum
% of the time required to complete service in the maintenance
% fork-join node.
% Author: Lt. Nicholaus Yager
% Last Revision: 1/28/03
%
%******************************************************************
function EmaxT = get_EmaxT(theta2);
%omega defines the state space for the fork-join node
omega = [1 1 1 1 1;41 1 1 1 1;42 1 1 1 1; 43 1 1 1 1; 44 1 1 1 1;

45 1 1 1 1; 41 42 1 1 1; 41 43 1 1 1; 41 44 1 1 1; 41 45 1 1 1;
42 43 1 1 1; 42 44 1 1 1; 42 45 1 1 1; 43 44 1 1 1; 43 45 1 1 1;
44 45 1 1 1; 41 42 43 1 1; 41 42 44 1 1; 41 42 45 1 1;
41 43 44 1 1; 41 43 45 1 1; 41 44 45 1 1; 42 43 44 1 1;
42 43 45 1 1; 42 44 45 1 1; 43 44 45 1 1; 41 42 43 44 1;
41 42 43 45 1; 41 42 44 45 1; 41 43 44 45 1; 42 43 44 45 1;
41 42 43 44 45];

%piofS is the probability of each omega row occuring
piofS = [0.157670933; 0.032294047; 0.100806007; 0.041912527;
0.058316647;

0.134312277; 0.020647013; 0.008584493; 0.011944373; 0.027509743;
0.026796533; 0.037284413; 0.085871783; 0.015501893; 0.035703263;
0.049677143; 0.005488447; 0.007636567; 0.017588197; 0.003175087;
0.007312717; 0.010174837; 0.009911047; 0.022826677; 0.031760797;
0.013205317; 0.002029973; 0.004675343; 0.006505223; 0.002704703;
0.008442743; 0.001729237];

%this loop calculates E[T] for each row of omega
for Sloop = 1:32

[w,v] = size(theta2);
if w == 45

S = omega(Sloop,:);
end
%the following removes the 1’s from S
for checkloop = 1:5

if S(6-checkloop) == 1
S = S(1:5-checkloop);

end
end
clear x; clear sum1; clear sum2; clear sum3; clear sum4;
clear lastsum; clear sum11; clear lastsum1;
[w,x] = size(S);
%x=0 sets the false-alarm penalty
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if x==0
EmxT(Sloop)=1;

end
if x >= 1

for g = 1:x
sum11(g)=1/theta2(S(g));

end
sum1=sum(sum11);
%the following 3 if statements find sums required to calculate E[T]
if x>=3

sum2=(1/(theta2(S(1))+theta2(S(2))))+
(1/(theta2(S(1))+theta2(S(3))))+(1/(theta2(S(3))+theta2(S(2))));

end
if x >=4

sum3=(-1)*(1/(theta2(S(1))+theta2(S(2))))-
(1/(theta2(S(1))+theta2(S(3))))-(1/(theta2(S(3))+theta2(S(2))))-
(1/(theta2(S(1))+theta2(S(4))))-(1/(theta2(S(4))+theta2(S(3))))-
(1/(theta2(S(4))+theta2(S(2))))+
(1/(theta2(S(1))+theta2(S(2))+theta2(S(3))))+
(1/(theta2(S(1))+theta2(S(4))+theta2(S(3))))+
(1/(theta2(S(1))+theta2(S(2))+theta2(S(4))))+
(1/(theta2(S(4))+theta2(S(2))+theta2(S(3))));

end
if x >=5

sum4=(-1)*(1/(theta2(S(1))+theta2(S(2))))-
(1/(theta2(S(4))+theta2(S(5))))-
(1/(theta2(S(3))+theta2(S(5))))-(1/(theta2(S(2))+theta2(S(5))))-
(1/(theta2(S(1))+theta2(S(5))))-(1/(theta2(S(1))+theta2(S(3))))-
(1/(theta2(S(3))+theta2(S(2))))-(1/(theta2(S(1))+theta2(S(4))))-
(1/(theta2(S(4))+theta2(S(3))))-(1/(theta2(S(4))+theta2(S(2))))+
(1/(theta2(S(1))+theta2(S(2))+theta2(S(3))))+
(1/(theta2(S(1))+theta2(S(2))+theta2(S(4))))+
(1/(theta2(S(1))+theta2(S(2))+theta2(S(5))))+
(1/(theta2(S(1))+theta2(S(3))+theta2(S(4))))+
(1/(theta2(S(1))+theta2(S(3))+theta2(S(5))))+
(1/(theta2(S(1))+theta2(S(4))+theta2(S(5))))+
(1/(theta2(S(2))+theta2(S(3))+theta2(S(4))))+
(1/(theta2(S(2))+theta2(S(3))+theta2(S(5))))+
(1/(theta2(S(2))+theta2(S(4))+theta2(S(5))))+
(1/(theta2(S(3))+theta2(S(4))+theta2(S(5))))-
(1/(theta2(S(1))+theta2(S(2))+theta2(S(3))+theta2(S(4))))-
(1/(theta2(S(1))+theta2(S(2))+theta2(S(3))+theta2(S(5))))-
(1/(theta2(S(1))+theta2(S(2))+theta2(S(5))+theta2(S(4))))-
(1/(theta2(S(1))+theta2(S(5))+theta2(S(3))+theta2(S(4))))-
(1/(theta2(S(5))+theta2(S(2))+theta2(S(3))+theta2(S(4))));
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end
%finds the sum of the substation response times
for p = 1:x

lastsum1(p)=theta2(S(p));
end
lastsum=sum(lastsum1);
%the following 5 if statements find E[T] as
%defined in Ch3
if x==1

EmxT(Sloop)=sum1;
end
if x==2

EmxT(Sloop)=sum1-(1/lastsum);
end
if x==3

EmxT(Sloop)=sum1-sum2+(1/lastsum);
end
if x==4

EmxT(Sloop)=sum1+sum3-(1/lastsum);
end
if x==5

EmxT(Sloop)=sum1+sum4+(1/lastsum);
end

end end
%calculates the 32 E[T], and multiplies by the probability of occurrence
for t = 1:32

EmxTtimespi(t) = EmxT(t)*piofS(t);
end
%sums the terms, giving the expected maximum of T
sumEmxTtimespi=sum(EmxTtimespi); EmaxT = sumEmxTtimespi;
clear theta2;
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Appendix C. LCOM Input Files
****************************************************************
* The following is the input file for the LCOM run of the base
* model. This input data was created with the aid of Mark
* Goldschimdt, ASC/ANMS WPAFB OH.
****************************************************************
15
15 BASE A 30
15 DS M 999
15 NS M 999
15 M1 M 999
15 M3 M 999
15 M41 M 1
15 M42 M 3
15 M43 M 2
15 M44 M 1
15 M45 M 2
15 M5 M 6
15 M6 M 4
20
20 SYSTEM NO-SRT I 0
20 SYSTEM DO-SRT I 0
25
25 DO_SORTIE 31 2.00H 0H X DS 1
25 NO_SORTIE 31 C NS 1
25 PF 31 0.25H 0H X M1 1
25 TS 21 0.50H 0H X M3 1
25 DUMSRT 11
25 SORTIE 11
25 R41 23 2.2H 0H X M41 1
25 R42 23 2.27H 0H X M42 1
25 R43 23 2.37H 0H X M43 1
25 R44 23 1.5H 0H X M44 1
25 R45 23 1.19H 0H X M45 1
25 FA 23 2.00H 0H X M1 1
25 OR 23 2.00H 0H X M1 1
25 OD 23 0.05H 0H X M1 1
25 TURN_AROUND 31 .75H 0H X M5 1
25 MUNITIONS 31 0.50H 0H X M6 1
30
30 MN00001 PF N132948 D
30 N132948 N133056 E .05
30 N132948 N133531 E .95
30 N133056 ADNO-SRT 1
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30 N133056 DUMSRT N133057 S
30 N133057 NO_SORTIE N133058 D
30 N133058 N133068 N134715 C
30 N133068 TS A 1.00
30 N133068 OD N133060 A .842
30 N133060 OR D
30 N134715 N134717 N135359 C
30 N134717 R41 A 0.17
30 N134717 R42 A 0.39
30 N134717 R43 A 0.21
30 N134717 R44 A 0.27
30 N134717 R45 A 0.46
30 N134717 FA A 0.16
30 N134717 A 1.00
30 N135359 TURN_AROUND N135553 D
30 N135553 MUNITIONS D
30 N133531 ADDO-SRT 1
30 N133531 SORTIE N142146 S
30 N142146 DO_SORTIE N142147 D
30 N142147 N135555 E 0.70
30 N142147 N133048 E 0.30
30 N133048 N133068 N134715 C
30 N135555 N135359 D
45
45 * 12 12
45 R 7
45 DS 200 200
45 NS 200 200
45 M1 200 200
45 M3 200 200
45 M41 200 200
45 M42 200 200
45 M43 200 200
45 M44 200 200
45 M45 200 200
45 M5 200 200
45 M6 200 200
55
55 LANT MN00001 NORMAL NORMAL SP1 BASE
60
60 SP1 C NORMAL 0.0
60 C A NORMAL 0.0
75
75F1 1 0310 BASE LANT 1 30 0 .01M C3.0 4.0 1
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****************************************************************
* The following is the input file for the LCOM run of the ALS
* model. This input data was created with the aid of Mark
* Goldschimdt, ASC/ANMS WPAFB OH.
****************************************************************
15
15 ALS A 30
15 DS M 999
15 NS M 999
15 M1 M 999
15 M3 M 999
15 M41 M 1
15 M42 M 3
15 M43 M 2
15 M44 M 1
15 M45 M 2
15 M5 M 6
15 M6 M 4
20
20 SYSTEM NO-SRT I 0
20 SYSTEM DO-SRT I 0
25
25 DO_SORTIE 31 2.00H 0H X DS 1
25 NO_SORTIE 31 C NS 1
25 PF 31 0.25H 0H X M1 1
25 TS 21 0.50H 0H X M3 1
25 DUMSRT 11
25 SORTIE 11
25 R41 23 2.2H 0H X M41 1
25 R42 23 2.27H 0H X M42 1
25 R43 23 2.37H 0H X M43 1
25 R44 23 1.5H 0H X M44 1
25 R45 23 1.19H 0H X M45 1
25 TURN_AROUND 31 .75H 0H X M5 1
25 MUNITIONS 31 0.50H 0H X M6 1
30
30 MN00001 PF N132948 D
30 N132948 N133056 E .05
30 N132948 N133531 E .95
30 N133056 ADNO-SRT 1
30 N133056 DUMSRT N133057 S
30 N133057 NO_SORTIE N133058 D
30 N133058 TS N134715 D
30 N134715 N134717 N135359 C
30 N134717 R41 A 0.17
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30 N134717 R42 A 0.39
30 N134717 R43 A 0.21
30 N134717 R44 A 0.27
30 N134717 R45 A 0.46
30 N134717 A 1.00
30 N135359 TURN_AROUND N135553 D
30 N135553 MUNITIONS D
30 N133531 ADDO-SRT 1
30 N133531 SORTIE N142146 S
30 N142146 DO_SORTIE N142147 D
30 N142147 N135555 E 0.70
30 N142147 N133058 E 0.30
30 N135555 N135359 D
45
45 * 12 12
45 R 7
45 DS 200 200
45 NS 200 200
45 M1 200 200
45 M3 200 200
45 M41 200 200
45 M42 200 200
45 M43 200 200
45 M44 200 200
45 M45 200 200
45 M5 200 200
45 M6 200 200
55
55 LANT MN00001 NORMAL NORMAL SP1 ALS
55 DUMSRT MN00001 NORMAL NORMAL SP1 ALS
60
60 SP1 C NORMAL 0.0
60 C A NORMAL 0.0
75
75F1 1 0310 ALS LANT 1 50 0 TASKTIME 3.0 4.0 1
75F1 1 0310 ALS DUMSRT 1 50 0 TASKTIME 3.0 4.0 1
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